
Introduction to
Computation Theory

Paige Zhu and Ronni Chang

(Mentored by Zoe Xi)

Table of Contents

What is Computation Theory? How does it apply to the world?

What is finite automata? How can these be used to solve problems?

What are Turing Machines? What can you discover from them?

How do you evaluate how much time a function takes to compute?

01

03

02

04

Introduction

Finite Automata

Turing Machines

Time Complexity

Preliminaries
What is Computation Theory? How does it apply to

the world?

0

Definitions
Alphabet - a finite non-empty set

ex. {A}, {1, 2, A}, {A, B, C, 0, 23}

String - finite sequence of symbols from an alphabet

ex. “0000”, “111”, “1ee3”, “aaa”

Language - a set of strings

ex. {A}, {A, B, C}, {1, 2, A}

Introduction
What is Computation Theory? How does it apply to

the world?

01

● The study of the fundamental principles underlying computation and the analysis of
algorithms

● Three major parts we’ll talk about:
○ Automata theory
○ Computability theory
○ Complexity theory

● Aims to answer the question:
○ What are the fundamental capabilities and limitations of computers?

What is Computation Theory?

Parts of Computation Theory
Automata Theory Complexity Theory

Explores the capabilities and

limitations of computational

models such as finite

automata, and Turing

machines

Studies the resources required

to solve computational

problems, including time and

space, and aims to identify

efficient algorithms for solving

them

Computability Theory

Investigates what problems can

be solved and cannot be solved

via an algorithm

Finite Automata
What is finite automata? How can these be used to

solve problems?

02

What is Finite Automata?

● A set of states (Q)

● A set of input symbols (alphabet, Σ)

● A transition function (δ)

● A start state (q
0

)

● A set of accept states (F)

Deterministic Finite Automata (DFA)

Simple Example: Switching Light Bulb
States:

● On and Off

Input Symbols:

● Toggle, switching the bulb on or off

Transitions:

● From Off to On when the input is Toggle.

● From On to Off when the input is Toggle.

Start State:

● Off: Assuming the bulb starts in the Off state.

Accept States:

● Both On and Off can be considered accept states depending on
the task. Both states are valid end conditions after an input.

Turing Machines
What are Turing Machines? What can you discover

from them?

03

What are Turing
Machines?

● One of the first models of our modern computer

○ A precise model for the definition of an

algorithm

● Very similar to finite automata, with one major

difference: uses an infinite tape with an unlimited

memory

● The construction: a TM uses a tape head to read

and write symbols and move on a tape until

entering an accept or reject state

All of the possible inputs.

Parts of a TM

These are the different ‘modes’ the

function could be in.

States

Input Alphabet

Contains all symbols that can be

written onto the tape.

Tape Alphabet

How the TM knows what to do at every

iteration.

Transition Function

The ‘mode’ in which the TM begins.

Start State

When you reach these states, your TM

will return either accept/reject.

Accept/Reject States

We construct as follows a TM M that decides
the language A = {0(2^n) | n ≥ 0}. Describe M:

M = "On input string ω:
● Go from left to right and cross off every

other 0.
● If there was only 1 zero in the first step,

accept.
● If there were more than 1 zero in the first

step and there were an odd number of
zeros, reject.

● Go back to the very left of the tape.
● Go back to the first step.

Example of a TM M:
● Q = {q

1
, q

2
, q

3
, q

4
, q

5
, q

accept
, q

reject
}

● Σ = {0}
● Γ = {0, x, ⊔}
● δ as pictured below
● The start state is q

1
, the accept

state is q
accept

, and the reject
state is q

reject

Time Complexity
How do you evaluate how much time a function

takes to compute?

04

What is Time Complexity?

The time complexity or running time of a Turing machine M is

the function f : N → N , where f(n) is the maximum number of

steps that M uses on any input of length n.

Big-O vs Small-o
● Used to estimate the running time of an algorithm

● Asymptotic analysis

● Considering only highest order term (disregarding coefficient and lower order

terms)

Big-O Small-o

Inclusive upper bound (≤)

n = O(n)

16n = O(n)

Strict upper bound (<)

2n = o(n2)

2n = o(3n)

*n is all positive real numbers

Example: Max Number in List

Input:

Result:

Algorithm: Loop over the elements of the list A. For every element A[k], compare it with the

current result R, and let R = A[k] if R < A[k].

Running Time: Every element needs 1 operation, so total time is n operations, denoted as O(n).

max

n elements

initially -∞

Problem: find the largest number in a list

Example: Subsets in a Set

Input:

Result:

Algorithm: Loop over the elements in list A, we have two choices for each element: include

it in the current subset or exclude it, and loop over A again until all subsets are found.

Running Time: There are 2n subsets in a set so the running time is 2n, denoted as O(2n) or o(3n).

of subsets

n elements

initially 0

Problem: find all possible subsets of a set of length n

Example: All Pairs Sum

Algorithm: Loop over the elements of the array A. For every element A[k], pair it with other

elements {A[p] | p = k+1, . . . , n} to perform additions.

Running Time: n(n-1)/2 operations, but < n2; i.e., upper bounded by n2. Hence, denoted by O(n2).

Input:

Result: ?

n elements

initially 0

Problem: find the amount of pairs of numbers from a list

Polynomial Time Preferred!

The Class P
● The class of algorithms that can be solved in polynomial time on a

deterministic single-tape Turing machine

● Problems that are realistically solvable on a computer

● MIT Math Department

● MIT PRIMES Program

● Marisa R Gaetz

● Mary Stelow

● Zoe Xi

● And all program sponsors!

Acknowledgements

Sources
“Practice Problems on Finite Automata.” GeeksforGeeks, GeeksforGeeks, 28 Aug. 2019,

www.geeksforgeeks.org/practice-problems-finite-automata/.

Sipser, Michael. Introduction to the Theory of Computation. Cengage Learning, 2021.

http://www.geeksforgeeks.org/practice-problems-finite-automata/

